The NUTRITIOUS GARDEN . ORG is a "Not - for - Profit" Organization. We Teach You to Have GOOD HEALTH from Choosing GOOD FOOD (Natural NUTRITION ). And, We Show You HOW To GROW All of It !
<p><span style="font-size: 18px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">Plants  Need  Water,  Sun  (PhotoSynthesis),  Soil  Nutrients,  and  good  Ground  Cover . . .   These  Components  Enable  the  Plants  to  Manufacture  Their  Own  Food !</span></font></span></p><p><span style="font-size: 18px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">   FRIENDS,  Right  Here  You  will  find  the  &quot;Real  Deal&quot; ! </span></font></span></p><p><span style="font-size: 18px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">___________________________________________________________</span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">Now,  Let's  Look  at  Each  Component  Item,  Specifically :</span></font></span></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">&gt;  W A T E R </span></p><p><span style="font-size: 14px; font-family: Georgia, serif;">If you are on &quot;City Water&quot;, the chances are very high, that your water is loaded with Chemicals;  Including, but Not Limited to Fluoride, Ammonia (10thN - NH3), Chlorine, Radium, Radon, Mercury, Uranium, Aluminum Oxide, Zinc, and Phosphorus. Not to mention sewage effluent, petrochemicals, organic toxins, pesticides, and inorganic solvents.</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">Do  Not  Drink  This  Water,  and  P-l-e-a-s-e !  Do  Not  let  your  children  drink  it  either !</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">The large 5 gallon jugs (in your Kroger's or Safeway store) provide the least expensive way to buy drinking water.   Also look for sources of real spring water to fill your own containers. There are also several high quality and very effective water-filtration units available, but  They Are Not Cheap !  (We can recommend a couple).</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">If You are Using this &quot;City Water&quot; to Irrigate your Food Plants,  Your Plants  and  YOU -  WILL  BE  Getting Frequent, Liberal Doses of these Poisons, from your Plant's Fruits and Roots, anyway !</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"><span style="font-size: 14px !important;">WELL,  WHAT   ABOUT   WATERING   PLANTS   (IRRIGATION)  --  </span></span><span style="font-size: 14px !important;">What   Does   Each   Plant   REALLY   NEED   ANYWAY ?   --   </span><span style="font-size: 14px !important;">How  Much -   How  Often -  and  When  Should  we  do  it ?</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> &gt;  When  a  Plant  is  DORMANT  -   </span></font><span style="font-size: 14px; font-family: Georgia, serif;">It  will  have   NO   GREEN   LEAVES   -and-   NO   OPEN   BUDS.</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> &gt;  When  a  Plant  is  EMERGING  -   </span></font><span style="font-size: 14px; font-family: Georgia, serif;">It  will  have  NEW (and Small)  GREEN  LEAVES  -and-  OPEN(ing)  BUDS.</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> &gt;  When  a  Plant  is   ACTIVELY  GROWING   -   </span></font><span style="font-size: 14px; font-family: Georgia, serif;">It  will  have  FULL-SIZED  GREEN  LEAVES  -and-  (Some New?)   OPEN  BUDS.</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">  &gt;  When  a  Plant  is  Just  Beginning  (i.e., Returning to)  DORMANCY  (In the Late Fall)  -  It will still have  Mature  GREEN  LEAVES  which are Beginning to Wrinkle and to &quot;Turn Colors&quot;  -BUT-  It  Will  NOT  Show  ANY  NEW  &quot;Twig Growth&quot;.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">A  Plant  NEEDS  WATER  --   For  Two  (2)  Very  Different  Functions  (or  Activities).</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> &gt;  First  -  When  a  Plant  has  Some  (or a Lot)  of  Green  Leaves  -  It  Needs  66%  of  the  Total  Water  Intake  (Requirement)  for  the  Photosynthetic  Chemical  Processes  (Known  as  PhotoSynthesis) .</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> &gt;  Then  -  The  Plant  Will  Always  Need  Sufficient  Water  (Continuously)  as  a  Fluidizing  Carrier  for Transporting  Minerals  and  Nutrients  throughout  It's  Cardio-Vascular  System.  (Roots  to  Leaves  via.  the  Cambium  Layers  -  the  Xylem  and  the  Phloem).   This  is  (Generally)  About  33%  of  the  Plant's  Total  Water  Requirements.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">__________________________________________________________</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">HOW  MANY  GALLONS  -  How  Applied  -  Applied  HOW  OFTEN ?   </span></font></p><p><span style="font-size: 14px; font-family: Georgia, serif;">  For  Illustration Purposes,  Let's  Use  an  Example:  A  Mature  Red  Currant  (Fruit)  Bush:  (Try  to  Visualize  the  Over-All  Plant  Volume  -  Its  Physical  Size).   A  &quot;Standard&quot;  (Mature  Size)  Bush  will  be  about  3 Feet  Tall  by  3 Feet  Wide. </span><span style="font-size: 14px !important;"><font face="Georgia, serif"> Obviously, a &quot;Standard&quot; Fruit Tree would be Much Larger in Size - </font></span><span style="font-family: Georgia, serif; font-size: 14px; background-color: transparent;">and It would need Considerably <u>More</u> Water.</span><span style="font-family: Georgia, serif; font-size: 14px;">  Also, a Tomato Plant would be Smaller in Size - and It would need Somewhat Less Water.  Well, You Get the Idea.</span></p><p><span style="font-size: 14px; font-family: Georgia, serif;">OPTIMAL  WEEKLY  GALLONAGE  Calculated  . . .</span></p><p><font face="Tahoma, sans-serif"><span style="font-size: 14px;">&gt;  Recording  the  5  Day Moving Average (</span><span style="font-size: 14px;">5 DMA ) </span><span style="font-size: 14px;"> --  3:00 p.m. Observed Temperature ( In Deg. F.)</span></font></p><p><span style="font-size: 14px !important;"><font face="Tahoma, sans-serif"> <u>&quot;Growth  STAGE&quot;:   5 DMA  =  50 Deg. F.  --   60 Deg.F.  --   70 Deg.F.  --  80 Deg.F.  --  90 Deg.F. &lt;Plus&gt;</u></font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">   DORMANT                                   2                     3                     5                   --                  --     [ GALLONS ]</font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">    EMERGING                                 4                     6                     9                  13                  --</font></span></p><p><font face="Tahoma, sans-serif"><span style="font-size: 14px;">    ACTIVELY  </span><span style="font-size: 14px;">GROWING                 8                    12                   18                 27                  38</span></font></p><p><font face="Tahoma, sans-serif"><span style="font-size: 14px;">    BEGINING </span><span style="font-size: 14px;"> DORMANCY              5                      8                    11                 17                   --     [ FALL ]</span></font></p><p><span style="font-family: Georgia, serif; font-size: 14px;"> HOW  OFTEN ?   Well . . .   We  Need  to  Consider  Several  Important  Facts . . .</span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">    1.  Any  Plant's  ROOT  SYSTEM  Must Have Oxygen (O2) to Live.  ALSO, ALL of the Living Organisms Below the Surface Must Have Oxygen (O2) to Live. (i.e., Earthworms, Single Cell Organisms, Nematodes).</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">    2.  YOU  Can  Remain  Conscious  for about 3 to 5 Minutes Without Oxygen.  After 12 Minutes, Your Brain Begins to DIE. (A Smoker has under 8 Minutes).   A  Plant  MAY  Have as much as  3 days.</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">    3.  A  Plant's  Root  System  can (generally) survive for 2 to 4 Days Without Oxygen. This Largely Depends on the Plant's  OverAll  Health  and  Robustness.  After that time, The Root System Begins to Die  (Yes, ALL of It!)</font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">    4.  If you are  Applying  Irrigation  Water more Often than  3 to 5  Day  Intervals, then Your Plant's  ROOT   SYSTEM  IS  DYING !!   Them's the Facts, Folks.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> &gt;  HERE  IS  A  SUMMARY  OF  THE  PROCEDURES  THAT  YOU  CAN  CHOOSE  TO  IRRIGATE.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> Idaho Clay Soil can absorb about 1/4&quot; of Water (Rainfall Equivalent)  in a 4-6 Hour Interval.  After that, the Water just Runs Off.  You Will Need to Apply from  1&quot;  to  2&quot;  of Water  (R.E. - Rainfall Equivalent),  Every 4-5 Days  at 90 Deg. F. Temps;  (Make that 6-7 Days for  75 Deg. F. Temps.).  You should Try to Minimize Water Run-Off.  The way we accomplish this is:  Our Timer Systems (Controlling the &quot;Drip-Water&quot;) Apply about  1/4&quot; (R.E.)  -  and then it shuts off.  After a Measured 4 Hour Wait, the water will </span></font><span style="font-family: Georgia, serif; font-size: 14px; background-color: transparent;">run</span><span style="font-size: 14px; font-family: Georgia, serif;"> again.  The system will repeat the same cycle - 4 Times Total - to achieve the Calculated Total Water Application.  This method is working very well.  </span></p><p><span style="font-size: 14px; font-family: Georgia, serif;"> Questions are always Asked about the different Delivery Methods:   </span><span style="font-size: 14px; font-family: Georgia, serif;"> We use our own &quot;home-made&quot; &quot;dribble-lines&quot; (Director's Invention).  It is made using  <span style="font-size: 14px !important;">3/4</span>&quot; I.D. White PVC, Sched. 40 pipe.  The pipe is drilled at  4&quot; - 6&quot;  intervals with a &quot;Cordless&quot; Drill and a  3/32” Drill bit.  The Holes are pointed  45 Deg. Left,  then  45 Deg. Right, then Straight-up, then repeat.  It is as Easy as that.  Some of our &quot;dribble pipes&quot; are 10 Years Old!  They Still Work Great! For any possibly plugged (or restricted) Holes -  We just use a  3/32&quot; drill bit, held by hand, to Clean them. (1/16&quot; is too small, and  1/8&quot; is too large;  3/32&quot; Dia. is “Just Right&quot;.)</span></p><p><span style="font-size: 14px;"><font face="Georgia, serif"><span style="font-size: 12px !important;"><span style="font-size: 14px !important;"> We have found that &quot;Drip-Line Emitters&quot; won't work correctly for very long, with Idaho water, due to the Large Dissolved Mineral Content.  Purchased New, they are rated at 2 GPH (Gallons per Hour). In two weeks, they are delivering about </span></span><span style="font-size: 14px !important;">1</span><span style="font-size: 14px !important;"> GPH!  In another two weeks, they are delivering 0.5 GPH.  A Month and a half later, they are delivering 0 (Zero) GPH !  UNLESS  You want to spend $350 on an Elaborate, Heavy Maintenance, Water Clean-ing and Filtration System . . .  Use &quot;Dribble Lines&quot;.</span></font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> Soaker Hoses usually work  O.K., but they are Difficult to Lay Out, and they (generally) Do Not Discharge Enough Water in one day! Also, they Will Plug Up with Mineral Deposits over time.  (Remember - you Must Let the Soil around the roots dry out for 3+ days.)</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> Flood Irrigation Requires  A  LOT  of  “HANDS-ON”  MAINTENANCE  and  KILLS  A  LOT  of  ROOTS  and   Micro-Organisms,  Earthworms,  and  Good  Nematodes !</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> OK.  How do  We  Calculate  the  Water  Requirements  for EACH of our Plants ?   </span></font><span style="font-size: 14px; font-family: Georgia, serif;">It is Not Difficult, If you  follow  certain procedures  and  carefully consider Certain Conditions . . .</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">   <u>Condition 1.</u> -  Plants In an Elevated Bed (a Bunker), or a Grade Level Row with a &quot;Downslope  Drain-out&quot;, or a &quot;Hill&quot; (mound) Above Grade;   These Should Have Good Drainage. </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">   <u>Condition 2.</u> -  In a Planting Soil Mix EXACTLY as Described in the &quot;Basic Horticulture&quot; Classes:  (1/3rd Sand, 1/3rd Aged, Finished Compost [Humus], and 1/3rd Idaho Clay Soil, Rock Screened);  This Will Follow the Formula.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">   <u>Condition 3.</u> -  In a Soil Mix which  YOU HAVE TESTED  For Water &quot;Run-through&quot; - That is, Timer Tested  -  You Already Know the Penetration Rate.  (Gallons per Minute).</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">   <u>Condition 4.</u> -  In a &quot;Full Sun&quot; Area where the ONLY Shade is the Plant being considered;  The Formula Will Apply.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">   <u>Condition 5.</u> -  Where You Apply the Water &quot;in Gradient&quot;  S-L-O-W-L-Y;  i.e.,  1/4&quot; R.E.  (Rainfall Equivalent)  for 1 Hour - then WAIT 4 Hours - and then Repeat 3 Times;  The Formula Will Apply.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">   <u>Condition 6.</u> -  ONLY  Where the Water is Applied at the Soil Surface (Grade) with a &quot;Gentle&quot; Delivery;  NO  Sprinklers,  NO  Shower Heads, and  NO  Hose Spray Nozzles;  Only Then,  </span></font><span style="font-family: Georgia, serif; font-size: 14px; background-color: transparent;">Will</span><span style="font-size: 14px; font-family: Georgia, serif;"> the Formula Apply.</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">   <u>Condition 7.</u> -  Where Your Water is  KNOWN  to be at a  &quot;pH&quot; equivalent of  7.0 (Neutral) or Slightly Lower;  The Formula Amount will be about right.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-family: Georgia, serif;"><span style="font-size: 14px !important;">IMPORTANT  NOTE:  </span></span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">These Statements ALL ASSUME that This Plant is &quot;ACTIVELY GROWING&quot;!  That can be Determined  (and Confirmed) by Observing that The Leaves Are ALL  (At least 80%)  FULLY  DEVELOPED  and  GREEN !</span></font></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">Step 1.  - Record Your 3:00 p.m.(LST) O.A.T. (Outside Air Temp) for 5 days. Average this group. This is TODAY's &quot;5-Day Moving Average&quot; or &quot;5 D.M.A.&quot;   Tomorrow will be a New (Calculated) Number.   So, Tomorrow, Record That Day's  3:00 p.m.(LST) O.A.T. (Outside Air Temp).   Then,  Drop Off   the Temp. 6 Days Back, and Calculate a New &quot;5 D.M.A.&quot;   Continue this practice each Day.</font></span></p><p><span style="font-size: 14px !important;"><font face="Tahoma, sans-serif">Step 2.  - Select the Correct &quot;5 D.M.A.&quot; Temperature Range, It's &quot;Multiplier&quot;, and the Daily Interval.</font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">       &gt;    50-65 Deg.F.   -      Use 0.6 Mult.   --   </font></span><span style="font-family: Tahoma, sans-serif; font-size: 14px;">Use</span><span style="font-size: 14px;"><font face="Tahoma, sans-serif">  a   7 Day Interval</font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">       &gt;    65-75 Deg.F.   -      Use 0.8 Mult.   --   </font></span><span style="font-family: Tahoma, sans-serif; font-size: 14px;">Use</span><span style="font-size: 14px;"><font face="Tahoma, sans-serif">  a   6 Day Interval</font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">       &gt;    75-85 Deg.F.   -      Use 1.0 Mult.   --   </font></span><span style="font-family: Tahoma, sans-serif; font-size: 14px;">Use</span><span style="font-size: 14px;"><font face="Tahoma, sans-serif">  a   6 Day Interval</font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">       &gt;    85-95 Deg.F.   -      Use 1.15 Mult.  --   </font></span><span style="font-family: Tahoma, sans-serif; font-size: 14px;">Use</span><span style="font-size: 14px;"><font face="Tahoma, sans-serif">  a   5 Day Interval</font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">       &gt;    95-105 Deg.F. -      Use 1.25 Mult.  --   </font></span><span style="font-family: Tahoma, sans-serif; font-size: 14px;">Use</span><span style="font-size: 14px;"><font face="Tahoma, sans-serif">  a   4 Day Interval</font></span></p><p><span style="font-size: 14px;"><font face="Tahoma, sans-serif">       &gt;   105 + Deg.F.    -      Use 1.50 Mult.  --   </font></span><span style="font-family: Tahoma, sans-serif; font-size: 14px;">Use</span><span style="font-size: 14px;"><font face="Tahoma, sans-serif">  a   3 Day Interval</font></span></p><p><span style="font-family: Georgia, serif;"><span style="font-size: 14px !important;">Step 3.  - Measure (or Guess) Your Plant's &quot;Drip Radius&quot; – Measure From Stem or Trunk Out to the  Farthest Limb Tip.   --   Example:   1.5 Feet Would Equal   3.0 Feet Diameter -  ( Mentally Adjust Upward for Tall Plants . . .  [ &gt;3 Ft.] and Downward for Short Plants </span></span><span style="font-family: Georgia, serif; font-size: 14px; background-color: transparent;">[ &lt; 3 Ft.] </span><span style="font-size: 14px; font-family: Georgia, serif;">).</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">Step 4.  - OK, Let's Calculate the Area of Just THIS Circle. Area  =  Pi  (X)  Radius Squared  =  The Area.   Note:  .  (Pi = 3.14167)   OK, Say the  Radius  1.5 Ft.  (X)  1.5  =  2.25  (X)  Pi  (3.14167)  =  7.069 SQ.FT.    (We will Convert to INCHES in the Next 2 Steps.)</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">Step 5.  - Let's Use the Standard  --  1&quot; R.E. (Rainfall Equivalent) For Our Water Volume Calculation.   So,   1&quot;  =   1/12 of a Foot.  &gt;  Circular  Area  (In SQ. FT.)  =  7.069    (See  Step 4.  Above).   So,  1/12  (Inch to Foot)  =  0.08333   (X)   7.069   (Calc.)   =   0.589  CU.FT.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">Step 6.  - AXIOM:   &gt;&gt;  <span style="font-size: 18px;">1  </span>CU.FT.  =  <span style="font-size: 18px;">7.5</span>  Gallons of Fluid. &lt;&lt;   From  Step. 5  --  Volume  of  0.589 CU.FT.  =  4.418  Gallons.  ( i.e.,   0.589  Cu.Ft.  [X]  7.5  Gallons  per  Cu.Ft.)</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">Step 7.  - WHEN  TO  WATER  and  HOW  MUCH ! !</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">  Say Your &quot;5  D.M.A.&quot; (From Step 1.  Above)  is  82 Deg. F.    FROM  the  Chart  in  Step  2.,  You  Get  a  1.0   Multiplier  and  a  6  Day  Application  Interval.  You Just Calculated  4.418  Gallons  (Call it 4.5).  So, Now You Know to Apply  4.5  Gals.  of Water Every  6 Days.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">You Will be  SO  CLOSE  to the  Desired  Amount,  It will Amaze You !</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">Plus TWO FINAL NOTES: The Above Steps ALL ASSUME That ...</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">     a.) Your Plant is &quot;Actively Growing&quot;.  See the &quot;Important Note&quot;,   Above;   and</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">     b.)  REMEMBER   SLOW / INTERVAL  Water  Application.  ReRead  <u>Condition 5.</u>) Above:    </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">  &gt;   In this case - 1.2 Gals. Every 4 Hours.   (16 Hours Overall).</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"><span style="font-size: 18px !important;">THE  SUN</span></font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif"><span style="font-size: 14px;">Of course, Plants  NEED  the  SUN.   Shade is not a Good Deal for Any Food Production Plants. Shade can and will Reduce the Rate of Photosynthesis (Rate of Production of Organic Sucrose to Feed the Plant) - of  Up To  90 %.   The Time Interval from Sun Rise to Sun Set is the Longest on June 22nd. So be aware of Shorter Intervals at other Dates.   The March 22 Time Interval will be 35 % Shorter than June 22.</span></font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"><span style="font-size: 14px;">ABOVE   ALL   -   Try  to  Avoid  Any  Shade !</span></font></span></p><p><span style="font-family: Georgia, serif; font-size: 18px; background-color: transparent;">___________________________________________________________</span><span style="font-family: Georgia, serif;"> </span></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">PHOTOSYNTHESIS   </span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">   The Overall EQUATION for the Process of  PHOTOSYNTHESIS  that occurs in plants -  </span><span style="font-size: 14px !important;">Looks like this . . .   </span></font></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">   &gt;    6  &quot;Mols&quot; of  CO2  (+)  6  &quot;Mols&quot; of  H2O  (+)  Natural Sunlight  =  (Yields)</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">                  4  &quot;Mols&quot; [C6H12O6]  (Organic Sugar [Sucrose] which is Retained)   (+)  </font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">                  6  Mols  O2  which is Released to the Atmosphere       { Mols = Molecules }</font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"> Photosynthesis is the process used by plants and some other organisms to convert light </span><span style="font-size: 14px !important;">energy, normally from the sun, into chemical energy, that can be used to fuel the </span><span style="font-size: 14px !important;">Organisms' activities, such as growth, fruiting, chemical processing (mineral conversion), </span><span style="font-size: 14px !important;">injury repair, and reproduction. </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"> Carbohydrates, primarily simple sugars (sucrose, glucose), are thereby synthesized from </span><span style="font-size: 14px !important;">the Carbon Dioxide (CO2 in the Air) and Water (brought up from the Root system);  </span><span style="font-size: 14px !important;">(hence the name Photo-Synthesis) – from the Greek /phos/, meaning &quot;Light&quot;, and from </span><span style="font-size: 14px !important;">the Greek /synthesis/, meaning &quot;a putting together&quot;).  Oxygen is Released into the </span><span style="font-size: 14px !important;">Atmosphere, as a waste product.  The carbohydrates (in the form of organic sugars) </span><span style="font-size: 14px !important;">which are produced by Photosynthesis, are stored in, and subsequently used by the plant. </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"> Most plants, most algae, and cyano-bacteria will perform the process of Photosynthesis, </span><span style="font-size: 14px !important;">and are thereby called &quot;Photo-autotrophs&quot;.  Photosynthesis from All Plants maintains </span><span style="font-size: 14px !important;">our Atmospheric Oxygen levels and it supplies ALL of the organic compounds  –and– </span><span style="font-size: 14px !important;">most of the energy necessary for ALL of Life on Earth. </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">Although photosynthesis is performed differently by different species, the process always </span><span style="font-size: 14px !important;">begins when energy from light is absorbed by proteins called &quot;reaction centres&quot; ( or </span><span style="font-size: 14px !important;">&quot;photo-cells&quot;) that Contain the Green Chlorophyll pigments. In plants, these proteins </span><span style="font-size: 14px !important;">are held inside plant organelles (cells) called chloroplasts, which are generally the most </span><span style="font-size: 14px !important;">abundant in leaf cells, while in bacteria they are embedded in the  plasma membrane.  </span><span style="font-size: 14px !important;">In these light-dependent reactions, some energy is used to strip electrons from suitable </span><span style="font-size: 14px !important;">substances such as water, thereby producing oxygen gas (O2). </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">Additionally, two other Important Compounds are generated:   </span><span style="font-size: 14px !important;">1. Reduced &quot;nicotinamide adenine dinucleotide phosphate&quot; (or NADPH) –and– </span><span style="font-size: 14px;">      2. Adenosine TriPhosphate (or ATP ##), which is the &quot;energy currency&quot; -</span><span style="font-size: 14px !important;">  (the fuel source) of the plant. This ATP provides the &quot;power-driven&quot; pumping </span><span style="font-size: 14px !important;">of plant fuel (sucrose), water, and Essential Minerals -  to sustain the Plant's life -</span><span style="font-size: 14px !important;"> health, growth, and reproduction.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"> In plants, algae and cyano-bacteria, sugars are produced by a subsequent (Following </span><span style="font-size: 14px !important;"> the PhotoSynthesis Process) sequence (or chain) of light–independent reactions, </span><span style="font-size: 14px !important;"> called the &quot;Calvin Cycle&quot;. Some bacteria may use different mechanisms, such as the </span><span style="font-size: 14px !important;"> &quot;Reverse Krebs&quot; cycle. (sic.)  In the Calvin cycle, atmospheric carbon dioxide is </span><span style="font-size: 14px !important;"> incorporated into already existing organic carbon compounds, such as Ribulose </span><span style="font-size: 14px !important;"> BiPhosphate (or RuBP). Using the (## ATP) and NADPH produced by the light-</span><span style="font-size: 14px !important;"> dependent reactions (Photo-Synthesis), the resulting compounds are then reduced </span><span style="font-size: 14px !important;"> (or neutralized). Next, they are removed, to form further carbohydrates, primarily </span><span style="font-size: 14px !important;"> simple organic glucose.</span></font></p><p><span style="font-size: 14px;"><font face="Georgia, serif">The first photosynthetic organisms probably evolved early in the evolutionary history of life and most likely used active reducing agents such as hydrogen (H) or hydrogen sulfide (H2S) as their primary source of electrons, rather than water. Cyano-Bacteria appeared later, and the excess oxygen they produced contributed to the oxygen &quot;catastrophe&quot;, which rendered the evolution of complex life possible. Today, the average rate of energy capture by PhotoSynthesis globally is estimated to be as high as 130 terawatts, (which is 130 Trillion Kilowatts). This is about six (6) times larger than the current power consumption of All of Human Civilization. PhotoSynthetic organisms also convert around 100 to 115 Billion metric tonnes of carbon into biomass every year.</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the energy-storage molecules  ATP## and NADPH. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide. Most organisms that utilize photosynthesis to produce oxygen use visible light to do so, although at least three use shortwave infrared or, more specifically, a “far-red”  light frequency (infrared radiation).</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif"> PhotoSynthesis –  An  Overview  In  Chemical  Terms</font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">Photosynthesis changes sunlight into chemical energy, causing the molecular &quot;splitting&quot; of water and liberating Oxygen (O2), and then &quot;fixing&quot; Carbon DIOXIDE (CO2) into sugar. Photosynthetic organisms are called &quot;Photo-Autotrophs&quot;, which means that they are able to synthesize food directly from carbon dioxide (CO2) and water (H2O) using energy from the Sun (light energy). However, not all organisms that use light as a source of energy carry out photosynthesis, since &quot;Photo-Heterotrophs&quot; use organic compounds, rather than carbon dioxide (CO2), as their primary source of carbon.</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">In most plants, algae, and Cyano–Bacteria, PhotoSynthesis releases oxygen. This is called oxygenic photosynthesis. Although there are some significant variations between oxygenic photosynthesis in plants, algae, and cyano-bacteria, the overall process follows the same steps in these organisms.</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif"> Please NOTE: There are some types of bacteria that carry out &quot;An-Oxygenic PhotoSynthesis&quot;, which consumes carbon dioxide but does not release oxygen.</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">Carbon dioxide is converted into organic sugars (sucrose) in a process called carbon fixation. Carbon fixation is an Endothermic (Heat Absorbing) &quot;redox&quot; reaction (Oxidation/ Reduction), so photosynthesis needs to supply both a source of energy to drive this process, and the electrons needed to convert carbon dioxide into a carbohydrate. This addition of these select electrons is a reduction reaction. In general format and in effect, photosynthesis is the opposite of cellular respiration, in which glucose and other compounds are oxidized to produce carbon dioxide and water, thereby releasing Exothermic (A Heat Producing reaction) chemical energy to drive the organism's metabolism. However, the two processes take place through a different sequence of chemical reactions and in different cellular compartments.</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif"> The general Equation for Photosynthesis is therefore:</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">    2n CO2 + 2n DH2 + Photons  [Yields] --&gt;  2(CH2O)n + 2n DO  (Stated as) . . .</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">       Carbon Dioxide (CO2) + Electron Donor (DH2) + Light Energy  [Yields] -–&gt;  Carbohydrates (CH2O) + oxidized electron donor (DO)</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">In oxygenic photosynthesis, water (H2O) is the electron donor and, since its hydrolysis (breaking down) releases oxygen, the equation for this process is:</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">    2n CO2 + 4n H2O + photons (light) [Yields] -–&gt; 2(CH2O)n + 2n O2 + 2n H2O</font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">       i.e.,  Carbon Dioxide + water + light energy  [Yields] -–&gt;  Carbohydrates + Oxygen + water</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">    Summarizing, 2n water molecules are cancelled on both sides, leaving:</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">       2n CO2 + 2n H2O + photons [Yields] -–&gt;  2(CH2O)n + 2n O2</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">       i.e.,  Carbon Dioxide + water + light energy [Yields] -–&gt;  Carbohydrates + Oxygen</font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"> PhotoSynthetic organisms also convert around 100 to 115 Billion metric tonnes </font></span><span style="font-family: Georgia, serif; font-size: 14px;">of carbon into biomass every year.</span></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"> Please  NOTE:  There are some types of bacteria that carry out &quot;An-Oxygenic </span><span style="font-size: 14px !important;"> PhotoSynthesis&quot;, which consumes carbon dioxide but does not release oxygen. </span><span style="font-size: 14px !important;"> Carbon dioxide is converted into organic sugars (sucrose) in a process called carbon fixation. </span><span style="font-size: 14px !important;"> Carbon fixation is an Endothermic (Heat Absorbing) &quot;redox&quot; reaction (Oxidation/ Reduction), </span><span style="font-size: 14px !important;"> so photosynthesis needs to supply both a source of energy to drive this process, and the </span><span style="font-size: 14px !important;">electrons needed to convert carbon dioxide into a carbohydrate. This addition of these select </span><span style="font-size: 14px !important;"> electrons is a reduction reaction. In general format and in effect, photosynthesis is the </span><span style="font-size: 14px !important;"> opposite of cellular respiration, in which glucose and other compounds are oxidized to </span><span style="font-size: 14px !important;">produce carbon dioxide and water, thereby releasing Exothermic (A Heat Producing reaction) </span><span style="font-size: 14px !important;">chemical energy to drive the organism's metabolism. However, the two processes take place </span><span style="font-size: 14px !important;">through a different sequence of chemical reactions and in different cellular compartments.</span></font></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">   The general equation for photosynthesis is therefore:</font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">             2n CO2 + 2n DH2 + photons  –&gt;  2(CH2O)n + 2n DO  (which is)</font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">                    i.e.  Carbon dioxide + electron donor + light energy  –&gt;  Carbohydrate(s)</span><span style="font-size: 14px !important;">  + oxidized electron donor</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;"> In oxygenic photosynthesis water is the electron donor and, since its hydrolysis (breakdown) </span><span style="font-size: 14px !important;"> releases oxygen, the equation for this process is:</span></font></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">             2n CO2 + 4n H2O + photons (light)  –&gt;  2(CH2O)n + 2n O2 + 2n H2O</font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">                    i.e.,  carbon dioxide + water + light energy  –&gt;  Carbohydrates </span><span style="font-size: 14px !important;"> + oxygen + water</span></font></p><p><span style="font-size: 14px;"><font face="Georgia, serif"> Generally, 2n water molecules are cancelled on both sides, yielding:</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">              2n CO2 + 2n H2O + photons  –&gt;  2(CH2O)n + 2n O2</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">                  i.e.,  carbon dioxide + water + light energy  –&gt;  Carbohydrates + oxygen</font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"> Other processes substitute other compounds (such as arsenite) in place of water in the </span><span style="font-size: 14px !important;"> electron-supply role;  for example, some microbes use sunlight in order to oxidize </span><span style="font-size: 14px !important;"> “arsenite”  into  “arsenate”.  </span></font><span style="font-family: Georgia, serif; font-size: 14px !important;"> Most organisms that utilize photosynthesis to produce oxygen use visible light to do so, </span><span style="font-family: Georgia, serif; font-size: 14px !important;"> although at least three use shortwave infrared or, more specifically, a “far-red”  light </span><span style="font-family: Georgia, serif; font-size: 14px !important;"> frequency (infrared radiation).</span></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"><span style="font-size: 18px;">&quot;RICH   SOIL&quot;</span>  -  &quot;Plants   Need   Rich   Soil&quot;.   So,  What  do  we  really  mean  by  that  . . .</font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">We   Cannot   Feed   Plants  --  Plants  Must  Feed  Themselves  --  Both  Glucose  and  Sucrose</font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif">Plants  Feed  Themselves  Using  the  Photosynthesis  Process  -  The  Plant  Must  Get  ALL  of  the  Supporting  Nutrients  from  the  Air  and  from  the  Soil  to  Support  Photosynthesis.  --  </font></span><span style="font-size: 14px; font-family: Georgia, serif;">So We Can Feed the Soil  and Thus Enable the Plants to Feed Themselves ! !</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">For More Details -  GO  TO  The  &quot;SOIL  NEEDS&quot;  Page . . .</font></span></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"> <span style="font-size: 14px !important;"><span style="font-size: 18px;"><span style="font-size: 18px;">PLANT  NUTRITION  –  The  Chemical  Elements</span></span></span></font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"><span style="font-size: 14px !important;">     To Learn About Plant Nutrition, we must first study the  Chemical  Elements  and  the  Chemical  Compounds  necessary for plant life and plant growth. We must Learn  All About the Plant's External Supply Sources which are the  Soil  and  the  Air.  Then, We must understand All of the Plant's internal Circulation and Metabolism Processes. </span></font></span></p><p><span style="font-size: 14px;"><font face="Georgia, serif"><span style="font-size: 14px !important;">     In 1972, E.L. Epstein (et.al.) defined two separate criteria, which are used to  determine  when a chemical element (or compound) is termed Essential for plant  life and growth:  </span></font></span><span style="font-family: Georgia, serif; font-size: 14px !important;">These are . . .   </span><span style="font-family: Georgia, serif; font-size: 14px !important;">1.)  If the specified Chemical Element (or Compound) is absent, then the plant will be Unable to continue, or to complete a Normal Life Cycle;  –OR–   </span><span style="font-family: Georgia, serif; font-size: 14px !important;">2.)  When the specified Chemical Element (or Compound) is found to be a part of some essential plant component, constituent, or metabolite.   </span><span style="font-family: Georgia, serif; font-size: 14px !important;"> Note: This Scientific Standard is also in accordance with  M. Liebig's &quot;Law of the Minimum&quot;. </span></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"><span style="font-size: 12px !important;"><span style="font-size: 14px !important;">There are,  all together,  </span></span></font></span><span style="font-size: 14px !important;"><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 18px !important;"><span style="font-size: 24px;"> 20 </span> ESSENTIAL  PLANT  NUTRIENTS </span></font></span></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">Carbon (C) (via. CO2) and Oxygen (O2) are absorbed from the  AIR, while All  18  of the  Other Nutrients,  Plus water, must be obtained from the soil.  </font></span><span style="font-family: Georgia, serif; font-size: 14px;">Plants Must Obtain All of the Following Mineral Nutrients directly from the growing medium  ( that is, From  the  Soil ) :</span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">  The  Essential  Nutrients  Are  (In Order):   </span><span style="font-size: 14px;">The  3  Primary  Macro-Nutrients, which are: </span><span style="font-size: 14px !important;"> Nitrogen (N), Phosphorus (P), and Potassium (K)   And</span><span style="font-size: 14px !important;"> - </span><span style="font-size: 14px;"> The  3  Secondary  Macro–Nutrients, which are: </span><span style="font-size: 14px !important;"> Calcium (Ca), Sulfur (S), and Magnesium (Mg);</span><span style="font-size: 14px !important;">   Plus, there is the Ever-Present  Macro-Nutrient: Silicon (Si).  That is  7  in Total.</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px;">  In Addition, there are t</span><span style="font-size: 14px !important;">he  11  Micro-nutrients / (or &quot;Trace Minerals&quot;) :  </span><span style="font-size: 14px !important;">Boron (B)  </span><span style="font-size: 14px !important;">–</span><span style="font-size: 14px !important;">   Chlorine (Cl)</span>  <span style="font-size: 14px !important;">–</span>   <span style="font-size: 14px !important;">Copper (Cu)</span>  <span style="font-size: 14px !important;">–</span>   <span style="font-size: 14px !important;">Iron (Fe)</span>  <span style="font-size: 14px !important;">–</span>   <span style="font-size: 14px !important;">Manganese (Mn)</span>  <span style="font-size: 14px !important;">–</span>   <span style="font-size: 14px !important;">Molybdenum (Mo)</span>  <span style="font-size: 14px !important;">–</span>   <span style="font-size: 14px !important;">Nickel (Ni)</span>  <span style="font-size: 14px !important;">–</span>   <span style="font-size: 14px !important;">Selenium (Se)</span>  <span style="font-size: 14px !important;">–</span>   <span style="font-size: 14px !important;">Zinc (Zn) </span>  <span style="font-size: 14px !important;">–</span><span style="font-size: 14px !important;">   </span><span style="font-size: 14px !important;">   Sodium (Na)   –and–   Aluminum  (Al)</span></font></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"><span style="font-size: 12px !important;"><span style="font-size: 14px !important;">The  Macro–Nutrients</span></span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  The  Macro-Nutrients – are consumed by the Plant in much larger quantities than the Micro-Nutrients. Macro-Nutrients are present in plant tissue in quantities ranging from  0.2%  to  4.0%.   (Based upon a Dry Weight measurement).</span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">The Micro–Nutrients </span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  The  Micro-Nutrients:  (aka  &quot;Trace Minerals&quot;)  are  (usually)  constantly present in plant tissue in quantities that are Measured in “Parts per Million” (or ppm), and the amounts range from 5 to 200 ppm, which is less than ( &lt; ) 0.02%  Dry Weight measurement. </span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  Most soil conditions around the world can provide plants with a somewhat adequate nutritional base.  Plantings usually do not require artificial fertilizer for a plant to complete it's life cycle. However, man can and does artificially modify soil through the addition of various chemical fertilizers and soil additives, to help promote vigorous growth, and to increase the crop yield. The plants are able to obtain these extended (additional) nutrients when the fertilizer(s) is added to the soil.  However,  a far more healthy process (for the Plants) is when we introduce &quot;Humus **&quot; into the &quot;Growing Medium&quot; (Soil).  And then we Also insure that an adequate supply of Micro-Biota [ Michorrizae (Fungii), Microbactra (</span></font></span><span style="font-family: Georgia, serif; font-size: 14px; background-color: transparent;">Microbial </span><span style="font-size: 14px; font-family: Georgia, serif;">Bacteria), Mycellium (Mushroom Fungus),  Earthworms, and Good Nematodes]  are also present to further process the Humus.</span></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 12px !important;"><font face="Georgia, serif"><span style="font-size: 18px !important;">Humus  (**)</span></font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  A &quot;colloidal carbonaceous&quot; residue, known as  Humus, serves as a significant </span><span style="font-size: 14px !important;">nutrient reservoir. Aside from the lack of water or sunshine, nutrient deficiency is </span><span style="font-size: 14px !important;">the major growth limiting factor.  </span><span style="font-size: 14px !important;">You Cannot Produce Humus.  A  MATURE  (Finished)  Compost  Pile  produces  </span><span style="font-size: 14px !important;">HUMUS.  We will be discussing  Humus - a Lot !</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  An  Important  Note  About  Compost :   There are two (2) Distinctly Different Methods of &quot;Composting&quot;.  First, No. 1)  This one is often called &quot;Hot Composting&quot;.  Temperatures in the Center of the &quot;pile&quot; often reach  140 Deg. F. Plus, even if you stir the pile every 10 minutes. This Method  KILLS  ALL  of the Earthworms, Micro-Organisms, Good Fungii, and Good Nematodes.  These &quot;Helpers&quot;  ARE  ESSENTIAL  to Producing Nutritious &quot;Humus&quot; **.  So -  All You Get is Carbon (C),  and Some  Nitrogen (N) -  and Very Few &quot;Trace Minerals&quot; -  NO  Other Nutrients !</span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  On the Other Hand,  Method  No. 2) -  Which is Called  &quot;Cool  Composting&quot; -  Is  VERY  Productive.  The &quot;Pile&quot; is Completely Shaded, Very Well Ventilated, and  &quot;Layered&quot;,  NOT  Stirred. </span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">Plant  Nutrition  --  The  Process</span></font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  Nutrient uptake from the soil is achieved by a &quot;cat-ion&quot; exchange, (–) where the </span><span style="font-size: 14px !important;">root hairs pump Hydrogen ions (H+) into the soil through &quot;proton pumps&quot;. These </span><span style="font-size: 14px !important;">Hydrogen  ions (H+) displace the &quot;cat-ions&quot;  which are attached to the negatively </span><span style="font-size: 14px !important;">charged (–) soil  particles, so that the &quot;cat-ions&quot; are available for uptake by the root.  </span><span style="font-size: 14px !important;">Remember that the  term &quot;cat-ion&quot;  is derived from the Electrical term &quot;Cathode” </span><span style="font-size: 14px !important;">(or Cathotic Ion), which has  a Negative (–)  charge. </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  Plant Nutrition is a difficult subject to understand completely,  partially because </span><span style="font-size: 14px !important;">of a widely varying  Chemical  Process  between different plants,  between different species, and even between </span><span style="font-size: 14px !important;">various individuals of a given clone. A chemical element present at very low levels </span><span style="font-size: 14px !important;">may cause a deficiency symptom(s) or NMS, while the very same element present </span><span style="font-size: 14px !important;">at a higher level may  cause damaging toxicity (from the over-abundant condition).  </span><span style="font-size: 14px !important;">Further, Deficiency of one element may show up as symptoms of Toxicity from </span><span style="font-size: 14px !important;">another (different) element. An abundance of one nutrient may cause a pronounced </span><span style="font-size: 14px !important;">deficiency of another nutrient. Also, any lowered availability of a given nutrient, </span><span style="font-size: 14px !important;">such as (SO2 or SO4) can directly affect the uptake of another nutrient, such as (NO3).  </span><span style="font-size: 14px !important;">In addition, (K+) (Potassium) uptake is directly influenced by the amount  of (NH4+)  </span><span style="font-size: 14px !important;">(Ammonia) which is freely available.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">The  Root  System</span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  The Root System, and especially the root hair, is the most essential organ for the uptake of nutrients. The structure and architecture of the root system can alter the rate of nutrient uptake. Nutrient ions are usually transported to the center of the root, the &quot;stele&quot;.  This is in order for the nutrients to reach the conducting tissues in the Cambium layer,  containing the Xylem and the Phloem. The Casparian strip, a  cell wall outside of the “stele” but within the root itself, prevents any Passive flow of water and nutrients. This helps regulate the rate of uptake of nutrients and water.  The Xylem moves water and  &lt;inorganic&gt; molecules within the plant. The Phloem  keeps count (and controls) &lt;organic&gt; molecule transportation.  Any Water &quot;Potential&quot; (a.k.a. – Capiliary movement)  plays a  key role in a plant's nutrient  uptake. If the water potential is more negative within the plant, than in the  surrounding soils, the nutrients will tend to move from the Higher Solute concentration (in the soil) to the Lower Solute concentration, which is in the plant. </span></font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  There are Three (3) Fundamental Ways that Plants can uptake nutrients through  the root system.  Those are:  </span><span style="font-size: 14px !important;">&gt;  1.)   SIMPLE  DIFFUSION, which occurs when a non-polar molecule, such as O2,  CO2, and NH3, follows  a &quot;Concentration  Gradient&quot;  (&quot;Gradient&quot; means a constant  “Rate-of-Change” in one direction  –  i.e.,  a Uniform Variable or difference).  Thus the  non-polar molecule can passively move through the &quot;lipid bi-layer&quot; membrane  without the use of active transport proteins;  Then</span><span style="font-size: 14px !important;">, There is </span><span style="font-size: 14px !important;"> &gt;  2.)   FACILITATED  DIFFUSION, which is the rapid movement of solutes (ions &quot;In Solution&quot;)  following  a  &quot;Concentration  Gradient&quot; (sic.), which is facilitated by the presence of very specific  transport proteins;   </span><span style="font-size: 14px !important;">Finally, there is </span><span style="font-size: 14px !important;"> &gt;  3.)   ACTIVE  TRANSPORT,  which is the active movement of ions or molecules  AGAINST  a  &quot;Concentration  Gradient&quot; (sic.). This requires an energy source, which is  usually  &quot;ATP ##&quot;,  (a.k.a., Energy-Rich Adenosine Tri-Phosphate),  by use of the  consumption of organic  sugars  –  [ the Plant's Food – Sucrose ] to pump the ions or  molecules through the  membrane.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 12px !important;"><font face="Georgia, serif"><span style="font-size: 18px !important;">Nutrients  and  Their  Distribution</span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  Nutrients are moved around inside of a plant, usually to where they are most  needed. For example, a plant will try to supply more of the nutrients to its younger leaves rather than to its older ones. So when nutrients are  mobile, the lack of  nutrients is first visible  on older leaves.  However, not all nutrients are equally  mobile.  When a less mobile nutrient is lacking, the younger leaves suffer -  because  the nutrient Does Not Move to them,  but stays lower in the plant – in the older  leaves. </span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  &gt;  Nitrogen (N), Phosphorus (P), and Potassium (K), are considered to be “Mobile” nutrients, while the other chemicals have varying degrees of mobility. This basic phenomenon is sometimes helpful in determining which nutrients a plant may be  lacking. </span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">     A Symbiotic Relationship may exist ( In Fact, It Should Exist ) between :</span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  1. )  Nitrogen Fixing Bacteria, (aka - rhizobial bacteria – aka - rhizomes), which are directly involved with  “Nitrogen (N) Fixing&quot; ( and which Occurs Only in Legumes,  i.e., Clovers, Peanuts, etc.).  This is the &quot;Innoculant&quot;  which should be Applied to Seeds or Roots when Planting  –  and is referred to  Elsewhere;    Also,  </span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  2. )  Mycorrhizae, (the Fungii) which can help to create a larger, healthier root surface area, (Specifically, &quot;Hair&quot; Roots) as they function to modify nutrients to make their uptake and utilization Expedient , and in some cases, Possible.  </span></font></span><span style="font-size: 14px; font-family: Georgia, serif;">This enables the Creation of “Humus”, which is where “Compost” has been  Converted  by the living Micro-Organisms  in the Soil  –  into an Altered Chemical  Form, which the  Plant's Root System can readily Absorb, and which the plant(s)  can then utilize. IF the Plant's  Cambium Layer can Transport these compounds, then the  Plant can Utilize them.</span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">   3. )  The Soil's &quot;pH&quot; (Acidity)  –  Both of these Mutualistic relationships significantly enhance, or  even enable the Plant's Nutrient Uptake.  The Soil's &quot;pH&quot; ( Below  6.0   is Preferred,  below  6.5  is  Crucial )  is vital;  This being the 3rd and Final Factor in  determining a Plant's Successful Nutrient Uptake.</span></font></span></p><p><span style="font-size: 12px !important;"><font face="Georgia, serif"><span style="font-size: 14px !important;">  Though Nitrogen (N) is plentiful (78%) in the Earth's atmosphere,  relatively  few  plants actually engage in nitrogen &quot;Fixing&quot; (which  is the conversion of  atmospheric  Nitrogen (N),  into a biologically useful form in the Soil). Most plants  therefore require  Nitrogen compounds to be present In The Soil in which they grow.  These Nitrogen  Sources can either be supplied by decaying matter, nitrogen  fixing bacteria (the rhizobia)  or add an  &quot;Innoculant&quot; to the Legume's Root System).  You can also utilize animal waste (Urea),  or  try  a  mechanical  application of some specifically  manufactured fertilizers . . .   (Which usually contain  {N}, for example, as in the  ammonium sulfate compound), and which is applied for this specific purpose.  Note:  Urea is  VERY  ALKALINE  - so use this application cautiously.</span></font></span></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">PLANT'S  NUTRITIONAL  PROCESSES  --  IN  GENERAL</span></font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  Plants uptake essential elements from the soil through their roots and from </span><span style="font-size: 14px !important;">the Air.  Remember, &quot;Air&quot; is 78% Nitrogen and 21% Oxygen.  Plants can absorb </span><span style="font-size: 14px !important;">Carbon (CO2)  through their leaves. Nutrient uptake from the soil is achieved by </span><span style="font-size: 14px !important;">the &quot;cat-ion&quot; exchange, referred to above.  This is where root hairs pump hydrogen </span><span style="font-size: 14px !important;">ions (H+) into the soil through proton pumps. These hydrogen ions displace the </span><span style="font-size: 14px !important;">&quot;cat-ions&quot; attached to negatively charged soil particles, so that the &quot;cat-ions&quot; are </span><span style="font-size: 14px !important;">available for uptake by the plant's root system. In the plant's leaves, Stomata  (pores) open up to take in carbon dioxide (CO2) and to expel oxygen. The carbon  dioxide molecules provide the Primary Carbon (C) source Necessary for  Photosynthesis to occur.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">THE  FUNCTION  and  The  USE  OF  NUTRIENTS</span></p><p><span style="font-family: Georgia, serif;"> </span><span style="font-size: 12px !important;"><font face="Georgia, serif"><span style="font-size: 14px !important;"> Each of the individual Required Nutrients is used in a different location within the  plant, and for different essential functions.  We will cover Each of these in sufficient detail  for this Basic Level.</span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">MACRO-NUTRIENTS   from  the  Air</span></font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  Macro-Nutrients (in Passive Form) which are derived from the &quot;AIR&quot; are: </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;"> </span><span style="font-size: 14px !important;"><span style="font-size: 18px;">  1. )  Carbon</span></span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  </span><span style="font-size: 14px !important;">Carbon forms the backbone of many plant's bio-molecules, including starches and  cellulose. Carbon is fixed through photosynthesis from the carbon dioxide in the air and is  a part of the carbohydrates that store energy in the plant. </span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">  2. )  Hydrogen</span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  Hydrogen also is necessary for producing sugars and for building the plant's structure. It  is obtained almost entirely from water.  Hydrogen ions are essential for a proton gradient </span><span style="font-size: 14px !important;">(variance) that helps drive the electron transport chain necessary for Photosynthesis and  for the plant's respiration to occur.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 14px !important;"> </span><span style="font-family: Georgia, serif; background-color: transparent;"> </span><span style="font-family: Georgia, serif; font-size: 14px !important;"><span style="font-size: 18px;">3. )  Oxygen</span></span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  Oxygen by itself (O2)  -or-  in the molecules of H2O or CO2 is necessary for any plant's  cellular respiration. Cellular respiration is the continuous process of generating energy-rich  &quot;Adenosine Tri-Phosphate&quot; ( &quot;ATP&quot;##) by way of the consumption of the sugars  (plant food) which are created by Photosynthesis. Plants produce oxygen gas during the  Photosynthesis process (This is the First Stage), to then produce  Glucose (or Sucrose -  pure natural sugars)  –   (This is the second stage).  </span><span style="font-size: 14px !important;">The plant then requires oxygen to undergo direct aerobic photometric respiration and  thus break down this glucose (pure sugar) to then be able to produce the Energy  Activating compound (&quot;ATP&quot;##).</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 18px !important;">MACRO–NUTRIENTS   from  the  Soil</span></font></span></p><p><span style="font-size: 12px !important;"><font face="Georgia, serif"><span style="font-size: 14px !important;"> The Primary Macro-Nutrients  which are derived from the Soil:   (Continuing . . .)</span></font></span></p><p><span style="font-size: 14px;"><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 18px;">  4. )  Nitrogen (N) </span></font></span></span></p><p><span style="font-size: 14px; font-family: Georgia, serif;">  Nitrogen  is  an  ESSENTIAL  COMPONENT  in  all  Proteins.  (Refer to the Page about &quot;HealthyPeople&quot;). Nitrogen deficiency most often results in stunted growth, slow growth,  and significant chlorosis. Nitrogen deficient plants may also exhibit a purple appearance on the stems, petioles and the underside of  leaves from an accumulation of Antho-cyanin pigments.  Most of the Nitrogen taken up by  plants is directly from the soil in the natural forms of (NO3–), although in acid environments such as boreal forests where nitrification is far less likely to occur,  ammonium compounds (NH4+) is more likely to be the dominating source of nitrogen. </span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">     NOTE:  Amino acids (Proteins) can ONLY be built from (NH4+),  So . . .   the (NO3–) must be reduced (Chemically Combined and Converted). Under many agricultural  settings, Nitrogen is the limiting nutrient of high growth rates. Some plants require more  Nitrogen than others, such as corn (Zea mays).  Because Nitrogen is very mobile, the older leaves will exhibit  Chlorosis  and  Necrosis  earlier than the younger leaves.  Soluble forms of nitrogen are transported as &quot;Amines&quot; and &quot;Amides&quot;.</span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">     Also NOTE: If you Apply High-Nitrogen Fertilizer (Such as 10-10-10  or  20-0-0),  you will Not Get Much Nitrogen. The 10 % Nitrogen Portion will eventually Convert (chemically) to less than 5 % which is Actually Usable by the Plants. This Means that your 50 lb. bag May give you  2 – 2.5 lbs. of  Usable Nitrogen.  </span></font></span><span style="font-size: 14px; font-family: Georgia, serif;"> Also, Urea is a High Value Source of Usable Nitrogen – BUT – Urea is VERY Alkaline !  So – unless your Soil is VERY Acidic (pH 5.5 or lower),  DO  NOT  USE  Urea.  </span><span style="font-size: 14px; font-family: Georgia, serif;"> Remember – The Best Source of Usable Nitrogen for your Plants is ALWAYS  the  Pure Humus from Finished (Mature) Compost.</span></p><p><font face="Georgia, serif"><span style="font-size: 12px;"><span style="font-size: 18px !important;">  5. )  Phosphorus (P)</span></span></font></p><p><span style="font-size: 12px !important;"><font face="Georgia, serif"><span style="font-size: 14px !important;">  Phosphorus is important in plant bio-energetics. As a component of  &quot;ATP&quot;, Phosphorus is needed for the conversion of light energy into chemical energy during the  Photosynthesis process. Phosphorus can also be used to modify the activity of various  enzymes by a step called &quot;phosphorylation&quot;, and this process can be used for cell &quot;in–step&quot;  signaling. Since &quot;ATP&quot; can be the basis for the bio-synthesis of many plant bio-molecules,  phosphorus is important for plant growth and for flower and seed formation. Phosphate  esters make up the DNA, RNA, and phospho-lipids. This is, most commonly, in the form  of polyprotic Phosphoric Acid (H3PO4) in the soil, but it is taken up most readily in the  form of H2PO4.  Phosphorus is quite limited in most soils, because it is hydrolized and  released very slowly from mostly insoluble phosphates. Under Most environmental  conditions, this is the  limiting element because of the (P)'s small concentration in the soil  and the high demand  by plants and micro-organisms. Plants can increase their Phosphorus uptake by a  mutualism with mycorrhizae (essential soil micro-organisms).  </span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">A Phosphorus deficiency in plants is characterized by an intense green coloration in  leaves. If the plant is experiencing high Phosphorus deficiencies, the leaves may become  denatured and show noticeable signs of necrosis.  Occasionally the leaves may appear  purple from an accumulation of  Antho-Cyanin.  Because Phosphorus is a mobile nutrient,  older leaves will show the first signs of deficiency. </span></font></span></p><p><span style="font-size: 12px;"><font face="Georgia, serif"><span style="font-size: 14px;">  &gt;&gt;  Note:  It is helpful to apply a High Phosphorus content fertilizer,  such as bone  meal, to perennials (and to many other plants) to aid them with successful root  formation. (This will certainly Speed up the process).  The plants will Also Benefit  from the Additional  Calcium (Ca) from the bone meal.</span></font></span></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">  6. )  Potassium (K) </span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">  Potassium regulates the opening and closing of the &quot;Stomata&quot; by a Potassium ion  pump.  Since stomata are important in every plant's aspiration and water rationing,  potassium reduces water loss from the leaves and thereby increases drought tolerance.  Potassium deficiency may cause necrosis or inter-veinal chlorosis. (K+) is highly mobile  and it can aid in balancing the &quot;An-ion&quot; (+) and &quot;Cat-Ion&quot; (–) charges within the plant. It  is also highly solubility in water, and it will readily leach out of rocky or sandy soils. This  water solubility can quickly result in Potassium deficiency within the plant. Potassium (K)  also serves as an activator of enzymes used in photosynthesis and in respiration.  Potassium is used to build cellulose (structure) and it aids in the photosynthesis process,  by the formation of a so–called &quot;chlorophyll precursor&quot;. Potassium deficiency may also  result in a higher risk of pathogens (diseases), wilting, chlorosis, so-called &quot;brown  spotting&quot;, and the greater likelyhood of damage from frost and/or excess solar heating.</font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"> More Macro-Nutrients (These are Secondary and Tertiary) - from Soil/ Root Uptake</font></span></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">  7. )  Calcium (Ca)</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">  Calcium regulates the transport of other nutrients into the plant and  it is also  involved in the activation (and usage) of certain plant enzymes.  Calcium (Ca)  deficiency results in stunting. This nutrient is directly involved in photosynthesis  and the health of the overall plant structure. </font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">  NOTE:  Blossom End Rot  (On Tomatoes, Peppers, Eggplant)  is caused by a Serious, on-going Nutrient  Deficiency,  a result of inadequate (</font></span><span style="font-family: Georgia, serif; font-size: 14px; background-color: transparent;">primarily) </span><span style="font-family: Georgia, serif; font-size: 14px;">Calcium, as well as other essential nutrients  (particularily Phosphorous).</span></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">  8. )  Magnesium (Mg)</span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  Magnesium is an important component of chlorophyll, which is the most critical  plant pigment – VITAL to photosynthesis. It is also important in the production of  ATP (see ^^)  through its role as an enzyme co–factor.  Magnesium deficiency can  also result in &gt; inter-veinal chlorosis. The Careful use of &quot;Epsom Salts&quot; helps here – Be Sure to Test Before Applying.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">  9. )  Silicon (Si)</span></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">  In plants, Silicon strengthens (reinforces) cell walls. It improves the overall plant   strength, vigorous growth and health, and crop productivity.  Other benefits of  silicon to  plants include improved drought and frost resistance, decreasing the  grain crop's lodging potential (&quot;blow–down&quot;) and the boosting of any plant's  natural pest and disease fighting tools arsenal and systems. Silicon has also been  shown to improve overall plant vigor and energy levels (physiology) by improving  the root mass and density. It also increases above ground plant biomass and crop  yields.  Silicon is not usually considered an essential element for a plant's growth  and development (except for certain plant species –  sugarcane and members of the  horsetail family), Silicon is considered a beneficial element in some of the various  growing regions throughout the world. This is due, primarily, to its many benefits to  numerous plant species when they are under some form of pro-biotic or anabiotic  (or abiotic) stress. Silicon is currently under active consideration by the   “Association of  American Plant Food Control Officials” (AAPFCO) for elevation to  the  status of a &quot;plant beneficial substance&quot;. </span></font></p><p><font face="Georgia, serif"><span style="font-size: 14px !important;">&gt;&gt;  An Important Note:  </span><span style="font-size: 14px !important;"> Silicon is the second most abundant element in the earth's crust.  Higher plants  differ characteristically in their capacity to take up, and/ or utilize Silicon in natural  form. Depending on their SiO2 (Silicon diOxide) content, they can be divided into  three major groups:   </span><span style="font-size: 14px !important;"> 1.)  Grains and Grasses  -  </span><span style="font-size: 14px !important;"> 2.)  Root Crops and Legumes  -  and  </span><span style="font-size: 14px !important;"> 3.)  Fruiting Plants (Basically, All Others)</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;">  10. )  Sulphur (S)</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">  Sulphur is a structural component of some amino acids and some vitamins, and  is  essential in the manufacturing of chloroplasts.  Sulphur is also found in the Iron/  Sulphur  complexes of the electron transport chains which are active in  photosynthesis. It  is  immobile (within the plant) and any deficiency therefore  affects younger tissues first.  Symptoms of deficiency include yellowing of leaves  and stunted growth.  </font></span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif">&gt;&gt;  An Important Note:  Iron/ Sulfur Compounds are the ONLY WAY to overcome any Seriously Alkaline Soil  pH Levels ( pH of 7.5 or more) in a Reasonable Time  Frame.</font></span></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-family: Georgia, serif;"> <span style="font-size: 18px !important;">The  MICRO-NUTRIENTS  --  Also  </span></span><span style="font-family: Georgia, serif;"><span style="font-size: 18px;">Called  The  &quot;Beneficial  Elements&quot;</span></span></p><p><span style="font-family: Georgia, serif;"><span style="font-size: 14px !important;">     &quot;Some elements are directly involved in plant metabolism . . .  Others are not.&quot;  </span></span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">This is from (Arnon and Stout, circa.1939).  However, this principle does not account for  the so-called beneficial elements, whose presence, while not required, has clearly positive  effects on plant growth. Some of these Mineral elements may either stimulate growth /but/ are not essential for growth; or are essential only for certain plant species;  or under certain  specific conditions.  Thus, these are usually referred to as &quot;Beneficial Elements&quot;.</span></font></p><p><span style="font-family: Georgia, serif; font-size: 18px;">___________________________________________________________</span></p><p><span style="font-family: Georgia, serif; font-size: 18px !important;"> &gt; Boron (B)</span></p><p><span style="font-size: 14px !important;"><font face="Georgia, serif"><span style="font-size: 14px !important;">  Boron is important for the binding of pectins in the (RGII) region of the primary  cell wall. Secondary roles may occur in sugar transport, cell division, and  synthesizing certain enzymes. Boron deficiency causes necrosis in young leaves and  sometimes, noticeable stunting.</span></font></span></p><p><font face="Georgia, serif"> </font><span style="font-size: 18px;"><font face="Georgia, serif">&gt; Chlorine (Cl)</font></span></p><p><font face="Georgia, serif"><span style="font-size: 14px;">  Chlorine, occurring in the compound form chloride, is necessary for osmosis and  ionic balance; it also plays a role in photosynthesis. </span></font></p><p><span style="font-family: Tahoma, sans-serif;"> &gt; Cobalt (Co)</span></p><p><font face="Tahoma, sans-serif">     Cobalt has proven to be beneficial to at least some plants, but is essential in  others,  such as legumes where it is required for nitrogen fixation, for the symbiotic  relationship it  has with nitrogen–fixing bacteria. The requirement of (Co) for (N2)  fixation in legumes  and non-legumes have been documented clearly. Protein  synthesis of the Rhizobium  (bacterium) is impaired when there is a (Co) deficiency.   It is still not clear whether (Co)  has direct effect on higher plant functions.</font></p><p><font face="Tahoma, sans-serif"><br /></font></p><p><font face="Tahoma, sans-serif"> &gt; Copper (Cu)</font></p><p><font face="Tahoma, sans-serif">     Copper (Cu) is a Very Important component of the entire Photosynthesis process.   Symptoms for Copper deficiency include chlorosis. (Cu) is  involved in many  </font></p><p><font face="Tahoma, sans-serif">enzyme  processes.  It is directly involved in the the manufacture of lignin (for cell  walls).  It  is  essential for any grain, for quality grain production. It is often hard to  identify (and to  retain) in some soil conditions.  </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Iron (Fe)</font></p><p><font face="Georgia, serif">     Iron is necessary for photosynthesis and is also present as an enzyme co–factor  in plants. Iron deficiency can result in observable inter-veinal chlorosis (leaves turn yellow) and  necrosis.  Iron is not included in the structural part of chlorophyll, but (Fe) is very  much essential for its  synthesis.  A Copper deficiency can be responsible for  amplifying any noticeable Iron  deficiency.</font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Manganese (Mn) </font></p><p><font face="Georgia, serif">     Manganese is necessary for photosynthesis. This includes the building of  chloroplasts. Manganese deficiency will likely result in various coloration  abnormalities, such as &quot;off-colored&quot; spots on the foliage. </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Molybdenum (Mo)</font></p><p><font face="Georgia, serif">     Molybdenum is a co-factor to various enzymes, and it is important in building  the amino acids (Proteins). It is Involved in active Nitrogen metabolism.  Molybdenum (Mo) is a part  of the  Nitrate (NO3) reductase enzyme.</font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Nickel (Ni)</font></p><p><font face="Georgia, serif">     In higher plants (the more complex ones), Nickel is absorbed by plants in the  form of  the  Ni2+ ion. Nickel is essential for the activation of  Urease, which is an  enzyme involved with nitrogen metabolism. This enzyme is required to process  Urea (from the Organic Fertilizers).  Without enough Nickel, Urea will accumulate  to toxic levels, leading to the formation of necrotic lesions. In lower plants, Nickel  activates several different enzymes which are involved in a variety of processes.  (Ni) can be a substitute for Zinc and Iron as a co-factor in certain specific enzymes. </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Sodium (Na)  (Common Salt is a Sodium compound –  NaCl) </font></p><p><font face="Georgia, serif">     Sodium is involved in the regeneration of phospho-enolpyruvate in CAM  and C4  plants.  Sodium (Na) can also be a substitute for potassium in some  plants. Sodium  Improves the crop quality of Root Crops, and it will improve the taste by increasing the  sucrose (organic sugars) content within a plant's stalk and root system. Sodium can  (sometimes) replace potassium's regulation of  stomatal  opening and closing. </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Zinc (Zn)</font></p><p><font face="Georgia, serif">     Zinc is required in a large number of enzymes and (Zn) does play an essential  role in  the DNA transcription. A typical symptom of Zinc (Zn) deficiency is the  stunted growth of leaves, commonly known as  &quot;Little Leaf&quot; or &quot;Leaf Dwarf&quot;. This </font></p><p><font face="Georgia, serif">is caused by the oxidative degradation of the growth hormone &quot;Auxin&quot;.(^ –  sic.) </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Vanadium (Va)</font></p><p><font face="Georgia, serif">     Vanadium may be required by some plants, but at very low levels of  concentration.  It  may also be substituted for molybdenum. Both Selenium and  sodium absorption may also  benefit from the presence of small amounts of  Vanadium (Va). </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> And, Finally . . .</font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif"> &gt; Aluminium (Al)</font></p><p><font face="Georgia, serif">     Tea plants have a high tolerance for (Al) toxicity and their growth is stimulated  by an  (Al) application. The possible reason for this is the prevention of Cu, Mn or P  toxicity  effects.  There have also been some reports that (Al) may serve as fungicide  against certain  types of blight or &quot;root rot&quot;. </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif">- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif">  And,   Plants   Need   Ground   Cover  (Your Garden Needs it.)</font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif">   Remember  3  Important  Features  of  Ground  Cover</font></p><p><font face="Georgia, serif">   How These Plants can Affect Your Garden – Very Substantially.</font></p><p><font face="Georgia, serif">   1.  Keeps the Top (Abt. 2”) Layer of Soil Much Cooler in Summer (up to  25 Deg. F.)</font></p><p><font face="Georgia, serif">   2.  Helps a Lot – to Retain Soil Moisture in the Vital Top Layer</font></p><p><font face="Georgia, serif">   3.  Prevents the Sun (Esp. Ultra-Violet Rays) from Reaching the Soil and KILLING</font></p><p><font face="Georgia, serif">      the  Vital  Soil  Micro-Organisms.</font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif">     Cover More Ground.  Cover your soil with an organic mulch or cover crop. </font></p><p><font face="Georgia, serif">Bare ground exposes beetles, spiders and other beneficial garden insects to climate </font></p><p><font face="Georgia, serif">extremes  (high temperature, wind, low humidity) that can threaten their very survival. </font></p><p><font face="Georgia, serif">“Use locally available organic mulch,” TNG says. “As long as it helps retain moisture, </font></p><p><font face="Georgia, serif">is well-aerated, and is not  infected with fungal pathogens, it will protect the beneficial </font></p><p><font face="Georgia, serif">insects from the Sun; and also provide food for some predators as it decays.” </font></p><p><font face="Georgia, serif"><br /></font></p><p><font face="Georgia, serif">Cover crops such as buckwheat, cowpeas, sweet clover, fava bean, vetch, red clover, white </font></p><p><font face="Georgia, serif">clover, and mustards can also provide food and shelter for beneficials. “The key is to </font></p><p><font face="Georgia, serif">make sure that both the cover crop and food crops overlap for at least some of the time, </font></p><p><font face="Georgia, serif">so beneficials can move directly from the cover crop to the crop pests,” says Robert Bugg, </font></p><p><font face="Georgia, serif">a University of California, Davis entomologist who has been studying the relationship </font></p><p><font face="Georgia, serif">between plants and beneficial insects for several decades. (A comprehensive cover crop </font></p><p><font face="Georgia, serif">database is available on the UC Sustainable Agriculture Research and Education </font></p><p><font face="Georgia, serif">Program website. Entries include information about a crop’s attractiveness to beneficial </font></p><p><font face="Georgia, serif">insects and other selection criteria.) At the end of the season, ignore the conventional </font></p><p><font face="Georgia, serif">advice to remove all spent vegetation. If you know you have a pest that will overwinter </font></p><p><font face="Georgia, serif">in the debris, go ahead and remove it or till it under. But if not, leaving the debris is </font></p><p><font face="Georgia, serif">better because beneficial insects will seek shelter in it. Bunch grasses and clumping </font></p><p><font face="Georgia, serif">perennials such as comfrey provide especially good winter shelter for a number of </font></p><p><font face="Georgia, serif">beneficial insects.</font></p><p><br /></p>